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ON THER~OE~STIC STRESSES IN AN ASY~ETRICALLY HEATED HALF-SPACE* 

L.N. GERMANOVICH, L.V. ERSHOV and I.D. KILL 

A quasistatic problem of thermoelasticity is considered for a half-space 
in the case of convective heat exchange (boundary condition of the third 
kind). In the case of boundary conditions of the first and second kind 
all results are obtained in exactly the same manner. The exact solution 
of the problem is found in the form allowing the construction of an 
approximate solution, simple and suitable for numerical computations and 
based on the asymptotic expansion of the temperature and the stresses as 
1 - 0. The problem is reduced to determining single integrals of simple 
functions, and inmany cases the integrals can be expressed in terms of 
elementary functions. The error of the approximate solution is estimated. 

Unlike the results obtained earlier in /l-3/, the temperature 
distribution in the medium adjacent to the half-space is not assumed to 
be axisymmetric, i.e. a general asymmetric distribution is studied under 
certain constraints that are not significant from the physical point of 
view. Such asymmetric distributions are very common in practice /4/. 
The results of this paper can be used to study the fracture of brittle 
materials which can occur under the action of thermoelastic stresses /5/. 

It should be noted that application of the numerical methods which 
were successfully used in solving the symmetric problem of thermoelasticity 
/6/ encounters, in the case of asymmetric, obvious difficulties caused 
by the increased dimensionality of the problem. 

1. The initial temperature of the elastic half-space z> 0 and the medium filling the 
region z<O is T = 0. At the instant t = cl the temperature of the medium rises instantaneously 
and assumes the distribution (r, q. z are cylindrical coordinates) 

8 = 0 (r. (I). 6l (r. q 7 2n) = 8 (r. r+) (1.1) 
and the function O(r.q) can be written in the form of a Fourier series whose coefficients 
admit of the n-th order Hankel transformation in r 
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where J,, is the n-th order Bessel function of the first kind. In the physical problems the 
cnditions for the existence of representations (1.2) hold as a rule. 

We require to find the temperature and stress fields inside the half-space when the heat 
exchange with the medium occupying the region z<@ obeys Newton's law. 

2. Let us transfer to dimensionless coordinates, putting rt = r/6, B' = z/ii, t’ = at/S*, h’ = hd 
where a is the thermal diffusivity, h is the relative heat transfer constant and 6 is a 
characteristic dimension. Neglecting, for simplicity, the primes accompanying the dimensionless 
quantities, we shall write the boundary value problem of heat conduction as follows: 

Tb=b=O; $1 
t=o 

=hfTk=d -q; T(m,ip,z,t)=Tir,p,~,t)=O 

Applyfng to the problem a Laplace transform in t, we obtain 

ST+ =AT*; .!$12-0=h(T*],=,,-+) 

We shall seek the solution of problem (2.2) in the form 

T* (rl v, z, s) = ngi [I+,* (P, 2, s) cos nq + v,* (r, z, s) sin q], Vo’~O 

(2.2) 

Substituting (1.21 and (2.3) into the equation and boundary condition (2.2) and equating 
the coefficients of like harmonics, we obtain 

(2.4) 

and anlogous boundary value problems for determining P,,*, n = i. 2, . . . 
Let us now apply the Hankel transform of the n-th order in r. This yields a boundary 

value problem. Solving it and inverting the Hankel transform, we obtain 
m 

II,* (7, z, s)= h i.J, (i.T)S&" (i.)di. (2.5) 

Finding in the same manner u,* (r.z.s) ar,ci subsituting it into (2.31, we obtain 

oc 0: 

n=0 b 
aI,, = O,.H (i.) cot nv - T,H (i.) rill no. 7~ = 0, 1. 2. . 

3. Let US find an expression for the thermoelastic displacement potential. Following 

171, we have (v is Poisson's ratio, a is the coefficient of linear expansion) 

U)*(r,z,s)= Es((sT* - limsT'~= 
r-0 

We find the expressions for the stresses corresponding to 13.1) using the formulas for 
the stresses from /Sf, having previously transformed them to cylindrical coordinates (fl is 
the shear modulus) 

,,,=2@&&tJ), &.=2&~if+@) (3.2) 

p,.=2~(~-&l), P"=z+&--$~) 

1 dm 
Pm =Zp$& pq*LZ2fi--- r aqa; 

As a result owe obtain expressions for the stresses pjj* (i,j = r,q,z). We alsc find that 
the expressions for p_.:*.~+_* and po:* are different from zero on the free surface z = 0. We 
remove them by bringing in an additional "temperature-free" solution obtained with help of 
the Galerkin function G. If the fom of its representation is knowr,, then the constants 

occurring in it can be found from the eqiiations 
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where qtt*, (i, j = r, cp, z) are the stresses corresponding to the Galerkin function, which csn be 
found using the formulas in /8/. 

titer substituting the values of pi)* and q,,* into (3.31, we reduce the last two 
equations to the form 0F*,‘ar = 0; aF*,‘&p = 0; system (3.3) then reduces to the following two 
equations: 

I [ 
& (2-~)~G*~-~]-;-f~-2~)(~-~~*))~~-o=~ 43.4) 

i 
(1--V)~Gr--~i(1-2v)~]/r=O=0 

We shall seek the representation of the Galerkin function in the form 

G*(r,cg,i,s)= 5 ~~~~~~~[A~( s, h ‘f +- zB,, Is, ?.)I J, (i.r) e-X2 di. + 
t,=0 0 

sin nq f [C, (s, i.1 + zD, (s, ?.)I J, (i.r) e-b di.} 
0 

(3.51 

We can confirm directly that G* is a biharmonic function. Subsituting (3.1) and (3.5) 
into (3.4) and equating the coefficients of like harmonics, we obtain a system of linear 
equations for computing A,. B,, C,.D,,(n = 0, I, 2,. ..). Thus the function G* will be completely 
determined. Calculating the expressions for qifc and combining them with the corresponding 
Pi>*, we obtain the expressions for the total stresses cij* 

J, (1.r) v kL + J, (i.r) (2 - Xz) i.2 j +. + 5.k: _!. 

11* 

_ = _ r,* - h f ($ [ +!!L i.kr + J, (i.r) 2$..?_ /c, - CYri 
D 

0” 

I 3 
!?J,, (;.r) vi.2 

fi.r) 
+ n-l 

r 
Z-i2 f J, (i.r) vx-2 f 

ZJ, (i.r) (h - i.) Y).~?] wl,d2. 

cn* 
3= 

D 
h - 1) J,, (i.r) - %rJ,,_, (i.r)] (3 e+ + kg) uzn dk 

0 

1 ‘_ 

ks = -+ ~-)f - hE - m$itm __ (,+ __ hi.: _ j.2;) q 

13.6) 

Using a table from /I/, we can write the originals for the temperature and the stresses. 
However, since the solution was constructed in a formal manner, the convergence of the integrals 
obtained must be checked. This requirement is practically trouble-free, because of the 
presence of the factors erp(- ?.z) and exp(- i.V) in the integrands. (Such a check was carried 
out for the example for the boundary distribution (1.1) given below). The singularities in 
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the integrands can be eliminated. 

4. The exact solution obtained above contains removable singularities which hamper its 
application and can cause considerable errors in numerical computations. In this connection 
we shall investigate the asymptotic behaviour of the solution as t-co. To simplify the 
problems connected with the convergence of series, we shall confine ourselves to the case 
when the boundary temperature distribution (1.1) is represented by a finite trigonometric 
polynomial, i.e. the series in (1.2) is replaced by a finite sum up to and including N. This 
restriction is not significant from the physical point of view. 

bet us first investigate the temperature distribution, considering separately every 
harmonic T,* in (2.6). Inverting T,*, we obtain the relation 

where L,-1 3.s an operator inverse to L, (the lower index denotes the argument of the original). 
Using Taylor's formula for esp(- 1%). we obtain 

.f, (z,1) = L;’ [ “y$; ;$) ] , m = 0, 1, 2, . . . 

cl < ; < T. rli = cl. 1. 2. r I . 

In determining the asymptotic expansion we choose the same system of functions both for 
the approximation and the comparison /9, lO/ 

pm(t)=(- i)+(:.II T”‘dT, m = 0, 1, 2,. . (4.3j 

From (4.2) and (4.3) we see that pm*, (f) = D (pm (t)) and T," =o(~,,,(t)) as t - 0. m = 0. 
1.2.... Therefore we have the following asymptotic expansion: 

A;,: ; (r, I+) = 7-i 
I. J,; (Ir) olh,,, d). (4.4) 

ln=O 0’ 

Using mathematical induction and the formulas from /ll/, we obtain the following relations 
for prr, (t) and ?, (2. ff 

irr erfc I = - & P-1 erff f $ & P-*erIr J. 

i-l erfc I = -&-erp(-*z). i” erfr z = erff z 

Thus we obtain the apprcximate solution (which becomes 

(4.6) 

t77=1,2,... 

asymptotically exact as 1 -) 0 ) 

(4.7) 

more suited for carrying out the calculations for small t than the exact solution. The 

functions jh.,l (2. i) contain only a single, special, well tabulated function, namely the auxilliary 
probability integral. The integrals AiT,l'" converge rapidly and are often taken in terms of 
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elementary functions (see the example). 
Let us new analyse the stress. From formulas (3.6) we see that the construction of the 

asymptotic forms of the stresses o,,, a,,, o,,, qq reduces to constructing the asymptotic ex- 
pansions, as t-0 , of the expressions 

(4.8) 

In the case of the stresses s,z and %z we must also construct the asympotic expansion 
as t-t 0 of the expression of the form (4.8) where f. (a,?) must be replaced by L,-' le-xl';l and 
we assume that i = I,?; j = 0,1,2,.. .; p= 2;q = 0. Since these cases are completely analogous, 
we shall only consider (4.8). We will merely note that the operation &-'[c+I'~ and z = 0 
is defined only in the class of generalized functions. This causes a certain amount of in- 
convenience, but since we know the exact values of o,, and oVz when .z = 0, namely (On = 
0 9z = O), we shall construct their asymptotic expansions under the assumption that z> 0. 

Chossing the following system of functions for approximation and comparison: 

Kn(l)=(--)mid8~Tm/a(i,T)di (4.9) 

and expanding exp (-),?T) in (4.8) as before, using Taylor's formula, we obtain the required 
asymptotic expansion 

(4.10) 

,C;,.; = A:,;. ,C;x,; = Bj:: = y j.’ Jh (i.r) co,. .e-” di. 
b 

(4.11) 

Mathematical induction is used to show that 

m m--). 

where fk(z,t) are given by (4.4). 
Finally we obtain the approximate fc_rmulas (asymptotically exact as t-+0) for computing 

the stresses 
N 

(4.13) 
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where 

(4.14) 

(the functions T{:(z,~) are defined in (4.5)). Note that the integrals (4.11) converge at 
least as rapidly as the integrals (4.4). 

5. Let us assess the error of the approximate solution (4.71, (4.13). To obtain a 
uniform estimate, we make use of the fact that @i,, !ai = I.. k ,, and fr (z,Z) is a solution of the 
one-dimensional problem of heat conduction for a half-space with zero initial temperature,when 
convective heat exchange occurs when t> 0 at the boundary of the half-space separating it 
from a medium at unit temperature, i.e. O< fI(i, t)< 1 is a function that increases monotonically 
with t. Integrating by parts and applying the mean value theorem, we obtain 

o.< i T":f0 (:, ?)A < P'f, (z. 1), (5.1) 

,i 

0 <I de i Tt"jo(;, T)dT < t"-',f~(S,t) 

Using (5.1), the well-known inequalities /Jn(r)] < 1 I’?. n = $.2....; 1 J,(r) / < 1 /ll/ and 
the inequality 0 < i.re-'-‘ S< e-l. we car, obtain the required estimate. Omitting the cumbersome 
calculations, we give the final res-lt for the estimates of the errors in the M-th approximation 
to the temperature and stresses, corresponding to deletion from the asymptotic expansions of 
all terms from the .\I - 1 -th term on. We have 

where 

6. Let us study in more detail the behaviour of the temperatureandthe stresses for 
short times. 

The zero approximation to the temperature 
T = 8 Cr. cyj j, (Z. II (G 11 

is asymptotically exact as f- 0. in the sense that the relative error of the approxinate 
solution (6.1) tends to zero as I - 0. 

From the physical point of view this means that at short heating times the limiting 
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distribution of the temperature propagates in the direction of the OX axis without "diffusing" 
in the radial direction and retaining its "form". 

In particular, if the limiting temperature distribution has a first-order discontinuity 
(a jump) along some line, then the temperature field in the half-space determined by the 
solution of the heat conduction equation, is continuous, but the jump is smoothed out only by 
the infinitesimals in t. 

In the case of the stresses we can find coarser approximate formulas which will still 
remain asymptotically exact in the same sense. Such are e.g. the relations obtained from 
(4.13) by deleting the terms containing the symbol 2, or, which amounts to the same, by 
deleting from theintegrands in (3.6) terms containing o. The errors in the approximate formulas 
obtained in this manner are estimated by formal substitutionof the value M= -1 into (5.2). 

Let us also consider the often-used approximation 

which is obtained by retaining, on the right-hand sides of formulas (4.13) for OW and ON 
the term --T only. Formulas (5.2) imply directly that the error of the approximation (6.2) 
is of the order of t as t- 0. A more accurate estimate obtained using the scheme described 
above shows that the approximation (6.2) is asymptotically exact only on the surface I= 0 of 
the half-space, and at the remaining points the relative error of relations (6.2) tends to 
unity (to 100%) as t-0. It is precisely this that leads to the error in the sign of the 
stresses (i.e. not only to a quantitative,but also to a qualitative error) as shown in /5/. 

7. We consider, as an example, the boundary temperature distribution in dimensional 
coordinates 

where 0, b.6 are constants with dimension of length, and 8, is the temperature at the region 
of coordinates. 

The distribution (7.1) has a bell-like shape and can be used to model the real temperature 
distribution at the boundary of a body being fractured by a high temperature gas jet /4/ when 
the jet is directed at an angle to the surface. If this angle is equal to n/2, i.e. if we 
have axial symmetry, then b= (1 in (7.11, otherwise the quantity b4iaS characterizes the 
asymmetry of the distribution. 

Passing further to dimensionless coordinates we put b= 1 in (7.1), in accordance with 
Sect.2 and regard as as 03~bs and b4 as b4:6’. Two terms remain in the Fourier series (,Y = i), 
and using the formulas from /12/ we obtain 

eeH (i) = e,o"e-', 13~~ (i.) = ‘:3(30b’ie-” (7.21 
Now we can find the coefficients of the asymptotic expansion (4.13) using the integral 

from /12/, which can conveniently be reduced to the form 

I = (I. ,, ~, . (7.3) 

where the function itself represents its zero order derivative by definition. The coefficients 

Al, and B,, can be found by putting t=1 and r==i+z respectively in (7.3) 

f ;."r-' di. = k!, k = 0, 1, 2, . . . (7.4) 
0 

Thus in the case of distribution (7.1) the final expressions contain only a single special 
function erfc I, which has simple approximating and asymptotic formulas over the whole interval 
of variation of the argument. The computations carried out with the help of (4.4), (4.13), 
(5.2), (7.3) and (7.4) are elementary. 

8. In the axisymmetric case the relations obtained above agree with the results of /5/. 
Note that there are misprints in formulas (3.4) of /5/: (I*:= rhB,,+ . . . should read CI,~= AtrB,,+ 
. . . and the factor :n-k is missing from the relations for q+,(z.t) under the summation sign. 

1. 
2. 

3. 
4. 
5. 
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ON USING THE MORE-ACCURATE EQUATIONS OF THIN COATINGS IN THE THEORY 
OF AXISYMMETRIC CONTACT PROBLEMS FOR COMPOSITE FOUNDATIONS* 

V.I. AVIIKIN, V.M. A~~~nRO~ and E.V. KOVALSNKO 

More-accurate equations describing the axisymmetric deformations of 
elastic, thin-walled elements (coatings) are derived using the asymptotic 
analysis of the solution to the first fundamental problem of the theory 
of elasticity for a layer. The notabie difference distinguishing these 
relations from the classical, Kirchhoff-Love and Reissner-Timcshenko 
equations of flexure of plates, and their modifications /l/, is, that 
there are no concentrated forces at the edges of the stamp when the 
corresponding contact problems are solved. Moreover, the formulas obtained 
contain the equations of classical theory as a special case. The solutions 
obtained using various applied theories are compared with the corresponding 
solution obtained using the equations oI. c the theory of elasticity, using 
the example of the axisymmetric contact problem of impressing a plane 
circular stamp into a layer lying on a Fuss-Winkier foundation. The 
characteristic parameters of the problem rn question are computed by 
n,:lerical methods. 

1. AS WE k:ao< /2/, the SGlCtiCr! of the equations of the thecry of elasticity can be 
exgressed, in the case of axisymmezric problems, by a single biharmcnic functron % (7, 2) 

(1.1) 

Let us consider the first bo,adary valile probler; on the equilibrium Of an elastic layer 
of thickness 2h, when the application 0. f external loads deforms it symmetrically about the 
z-axis. we shall seek the sclutlon of (1.1) in the form of a Hankel integral /3/ 

= 
(1.4) 

S,ubstituting (i.4' intc :1.;' ar.5 carrying cut simple mathematical reduction,, we obtain 

0 (5. 3) = (r,ch ;; - F&2 sh tz + d,sli& + d& ch it) ;-" (1.5) 

where Cj and dj(j = 1.2) are functions of $ whose forz is determined from the boundary conditions 
of the problemin question & (T, h) = o_(r). T,, (r. r?) = 1, (r) (1.6) 

0, (r, - 1)) = o_ (r), T,, (r. - h) = T_ (7) 

0,. T,, --e 0. (r: _r 22) -+ 00 

*Prikl.Matem.MeWlan.,49,6,1010-1016,198-: 


